DIFFUSION OF BUBBLES IN TURBULENT FLOW
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The diffusion of bubbles in turbulent flow is considered, A relation is found for the coefficients
of turbulent diffusion of bubbles and liquid particles of a carrier medium.

When studying the motion of gas —liquid flows, in which the gas phase is present in the form of bubbles,
problems of diffusion of the bubbles in turbulent {low may arise. Since the density of the gas bubbles is dif-
ferent from the density of the carrier medium, it would be expected that the pulsating motion of the bubbles
and, consequently, also their diffusion in turbulent flow differ from the pulsating motion and diffusion of liquid
particles of the carrier medium.

A number of authors [1-3], investigating the motion and diffusion of particles in a turbulent medium, have
considered cases of motion of particles whose density is less than the density of the medium. It was shown that
the pulsating velocities of these particles {pubbles) are greater than the pulsating velocities of the carrier me-
dium, but an analysis of the diffusion process of these particles has not heen undertaken.

In this present paper, we consider the ratio of the coefficients of diffusion of bubbles and liquid particles
of the carrier medium in turbulent flow with certain simplifyving assumptions. The case of low bubble concen-
tration is considered, in order that the effect of the hubbles on one another and on the turbulent flow charac-
teristics could be neglected. With this assumption, it is sufficient to consider the motion of a single bubble.

Suppose that an element of liquid, containing bubbles of gas, is moving with a velocity u(t). In this case,
an expelling force Vpdu/dt acts on the bubbles, by the action of which a relative motion of the bubble with a
velocity w(t) results. The equation of motion of the bubble will have the form
I N dw du
Vit —o | L mvpl _F 1
(“’ T Jodt dt @
HereV{py+1/2p) is the sum of the intrinsic and additional masses of the bubble; w = v ~ u is the relative veloc-
ity; and F is the drag force resulting from the relative motion.,

In the case of nonsteady motion of a sphere, an integral term (Bassetforce) occurs in the expression for
the drag force, which takes into account the nonsteadiness of the motion; however, because of the mobility of
the boundary of the bubble, the vorticity in the boundary layer is far less than in the case of motion of a solid
sphere, and the Basset force obviously can be neglected. For a bubble of spherical shape moving in a pure
(without surface-active agents) liquid, the expression for the drag force [4]

F = 12zvpaw 2)

coincides well with the experimental data over a wide range of Reynolds numbers, determined by the size of
the bubble and the velocity of motion [5]. Taking Eq. (2) into consideration, the equation of motion can be writ~
ten in the form

dw du
Jhadna A Y — -
py - AY ¥ 7 3)
or, for the absolute velocity of the bubble,
du du
— = Ayv = (y — 1) == — Ayu,
" V=1 e yu 4)
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where

Congidering further the motion of the bubbles in turbulent flow, we note that the equations of motion
should contain a term of the type vdzui/dxf{, the contribution of which is significant only for elements of liquid
whose dimensions are of the order of a microscale of turbulence. Since as the process of diffusion is deter-
mined by large-scale turbulence, this term can be neglected.

Thus, in order to determine the statistical properties of the turbulent velocity pulsations of the bubbles,
we shall use the linear Eqs. (3) and (4), in which u, v, and w are random functions. In order to determine the
amplitude —frequency characteristics which relate the spectral characteristics of the velocity pulsations of the
bubbles and of the medium, we assign a velocity for the medium in the form of a harmonic component, and
from Eqs. (3) and (4) we obtain the corresponding solutions for v{t) and w(t). Squaring v(t) and w(t) and averag-
ing with respect to time, we obtain the squares of the moduli of the amplitude—frequency characteristics:

(v = D2 +{Ay)®

; 2 — 5
flor = ®)
for the absolute action of the bubbles and
, Yo
i [ 6
ol = Gy ©

for the relative motion of the bubbles. We shall assume further that the turbulence of the carrier flow is char-
acterized by the Lagrange time correlation

R (v) —=exp {—— %) . (7)

The corresponding expression for the spectral density, defined as the Fourier cosine-transform of the
correlation function R(7), has the form

E (o) = 2:5 YR (1) cos wTdT = ) . , (8)
Tob

The expression for the spectral density of the velocity pulsations of the bubbles relative to a stationary system
of coordinates is obtained as the product of the spectral density E (w) and the square of the modulus of the am-
plitude —frequency characteristics (5):

204 [(y -+ D*e® + (Ay)7] ©)

E*(¢) = - 1 _
' nT(F—}—mz)[wz—i—(AyF J

Then the ratio of the dispersions of the velocity pulsations of' the bubbles and of the medium will have the
form

15

_ 1 (s _ 4 D AT 10
:_ESE(MO)_ A (10)
1]

It can be seen from formula (10) that in a liquid with a vanishingly small viscosity (A — 0) the ratio of the
dispersions is equal to (y + 1)2. In the other limiting case of a large viscosity of the medium or bubbles of very
small dimensions (A — «), this ratio tends to unity. Similarly to Eg. (10), we obtain for the dispersion of the
pulsations of the relative velocity

oo

2 > 2
Ow 1 * Y
22— 2\ Ef (@)do = ——— 11)
ol 03:5 0 (o) do 1+ 4T (

where

E{ (@) = E(0) [fo (@)™
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Fig. 1. Dependence of ratio of the
turbulent diffusion coefficients of
the bubbles and of the liquid parti-
cles of the carrier medium on: 1)
y=1;2)1.5:3)2.

By analogy with the coefficient of turbulent diffusion in single-phase turbulence, defined by Taylor as the
product of the intensity of the velocity pulsations and the Lagrange scale of turbulence, the coefficient of diffu-
sion of the bubbles can be written in the form

D, = o,A* = 0;T*, az)
where T* = A*/u,, is the Lagrange time scale of motion of the bubbles.

In the case of motion of bubbles in turbulent flow, the diffusion process at large times is determined by
the vortices, the dimensions of which are equal to the integral scale of turbulence. But although the exponen-
tial form of the correlation function (7) indicates a statistical relation of the velocity pulsations of all scales
of turbulence, it will be assumed that the vortices whose dimensions are equal to the integral scale are statis~
tically independent, Thenthe Lagrange time scale of the motion of the bubbles is equal to their time of stay in
the vortex of the integral scale A for the condition that after this time the direction of motion of the vortex is
essentially unchanged. Thus, we obtain

i‘* = , (13)

where
v (14)
Substituting Eq. (11) in (13) and taking account of Eq. (14), we obtain the ratio of the Lagrange time scales of
motion of the bubbles and of the medium:
V1 AT (15)
¥

™ _
=
It can be seen from formula (15) that if AT > (y*—1)/y, then the time of stay of a bubble in the vortex will
be greater than the time during which the vortex is moving predominantly in one direction. In this case, the
bubbles will perform random wanderings inside large-scale vortices, transported by the latter along the flow.

Substituting Eqs. (10) and (15) in Eg. (12), we obtain the ratio of the diffusion coefficients of the bubbles
and of the carrier medium for AT < (y* — 1)/y:

D, _ oT* _ (n+1F+ AT

PR ~ : — 16

D o.T v/ 13- AyT a6)
When AT > (¥ — 1)/y, assuming for the time scale of the motion of the bubbles the Lagrange time scale of mo~
tion of the medium T, we obtain

D, oo _(+1P+MT an

D 1+ AT
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It can be seen from Eqs. (16) and (17) that the ratio of the diffusion coefficients of the bubbles and of the
carrier medium is greater than unity. In the limiting cases AT — 0 and AT — o, the ratio of the diffusion
coefficients is equal to (y +1)%/y and 1, respectively, (Fig. 1).

Formulas (10), (11), (16), and (17) are obtained for the case of the motion of bubbles under the action of
turbulent veloceity pulsations of the carrier medium of all scales [integration in Eqs. (10) and (11) was carried
out from zero to infinity]., However, the motion of spherical bubbles, whose dimensions considerably exceed
the microscale of turbulence, will be determined only by those turbulent velocity pulsations whose scale is
greater than the dimensions of the bubble, Therefore, we shall determine the dispersions of the absolute and
rejative velocity pulsations in this case as

o

e - jE*(m)dm (8)
Cu oy ’
Q
and
2 1 o
%o _ SEé‘(m)dm. (19)
u Oy

Q

Here the upper limit of integration «, is the characteristic frequency of the velocity pulsations of the liquid,
the scale of which is equal to the size of the bubble, i.e.,

u e \3
too~—i—=( o ) . (20)

where u), is the change of the pulsation velocity at a distance A [4]; and € is the rate of energy dissipation per
unit volume, expressed in terms of the work per unit volume as [6]

3

= 1.65p 3¢ 21
€ 165pA . {21)
Substituting Eq. (21) into Eq. (20), we obtain
1
1.656% \3
(oo—_—( T ) (22)

while from relations (18), (19) and {22}, using Egs. (13) and (14), an expression can be obfained for the diffusion
coefficients Dy/D.

If the dimensions of the bubbles are such that the characteristic frequency of the pulsations «, is one
order from the characteristic turbulence frequency 1/T, and the quantity A is much less than these quantities,
then the expressions for the spectra of the absolute and relative velocity pulsations of the bubbles are simpli-
fied:

2y + 1o}

E*¥(0) =~ 1 (23)
:[Tk’['; + (.!)2>
and
2
E¥ (o)~ _ e , , (24)
1
nT(F 4 wz)
Integrating Eqs. (23) and (24) from zero to «y, we obtain
2 2
% _ 20+ 1 arcig o,T (25)
a? iy
and
2 2 2
% _ 2V arctg @7 (26)
o? I

u
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Determining from Eq. (26) the time scale of the motion of the bubbles according to Eq. (13) and taking
account of Eqs. (22) and (14), we obtain the ratio of the diffusion coefficients for AT < (v*—1)/y in tae form

b, 72 ,(L%”Z[

Fno —L | arctg 1 18[' A 27
D 1 ha v s )

] vy

We note that with a reduction of the dimensions of the bubbles, the ratio of the diffusion coefficients Dp/
D tends to (y + 1)%/y just the same as according to formula (16).

Thus, the diffusion coefficient of the bubbles for defined conditions can considerably exceed the turbulent
coefficient of the liquid particles of the carrier flow. If the density of the gas in the bubble is much less than
the density of the liquid, then the maximum value of the ratio of the diffusion coefficients amounts to 4.5 as
AT — 0.

NOTATION

u(t), vit), w(t) are the velocities of medium and bubbles (absolute and relative);

Ty Oys Ty are the intensities of the velocity pulsations of the medium and bubbles (absolute and rela-
tive);

v is the coefficient of kinematic viscosity of the medium;

6 is the radius of the bubble;

a, By are the densities of the medium and of the gas in the bubbles;

flw), fy(w) are the amplitude —frequency characteristics for the absolute and relative motions of the
bubbles:

E,E*% Ef are the spectral densities of the velocity pulsations of the medium and of the bubbles (ab~
solute and relative);

T, T* are the Lagrange time scales of motion of the medium and of the bubbles;

A, A* are the integral scales of motion of the medium and of the bubbles;

D,.D are the turbulent diffusion coefficients of the bubbles and liquid particles of the carrier
medium:

w is the angular frequency;

A is the volume of a bubble.
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